|
Product Description
Publisher's Note: This edition from 2018 is outdated and not compatible with any of the most recent updates to Python libraries. A new third edition, updated for 2020 with six new chapters that include multi-agent methods, discrete optimization, RL in robotics, and advanced exploration techniques is now available.
This practical guide will teach you how deep learning (DL) can be used to solve complex real-world problems.
Key Features
- Explore deep reinforcement learning (RL), from the first principles to the latest algorithms
- Evaluate high-profile RL methods, including value iteration, deep Q-networks, policy gradients, TRPO, PPO, DDPG, D4PG, evolution strategies and genetic algorithms
- Keep up with the very latest industry developments, including AI-driven chatbots
Book Description
Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4.
The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on 'grid world' environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots.
What you will learn
- Understand the DL context of RL and implement complex DL models
- Learn the foundation of RL: Markov decision processes
- Evaluate RL methods including Cross-entropy, DQN, Actor-Critic, TRPO, PPO, DDPG, D4PG and others
- Discover how to deal with discrete and continuous action spaces in various environments
- Defeat Atari arcade games using the value iteration method
- Create your own OpenAI Gym environment to train a stock trading agent
- Teach your agent to play Connect4 using AlphaGo Zero
- Explore the very latest deep RL research on topics including AI-driven chatbots
Who This Book Is For
Some fluency in Python is assumed. Basic deep learning (DL) approaches should be familiar to readers and some practical experience in DL will be helpful. This book is an introduction to deep reinforcement learning (RL) and requires no background in RL.
Table of Contents
- What is Reinforcement Learning?
- OpenAI Gym
- Deep Learning with PyTorch
- The Cross-Entropy Method
- Tabular Learning and the Bellman Equation
- Deep Q-Networks
- DQN Extensions
- Stocks Trading Using RL
- Policy Gradients – An Alternative
- The Actor-Critic Method
- Asynchronous Advantage Actor-Critic
- Chatbots Training with RL
- Web Navigation
- Continuous Action Space
- Trust Regions – TRPO, PPO, and ACKTR
- Black-Box Optimization in RL
- Beyond Model-Free – Imagination
- AlphaGo Zero
Customers Who Bought This Item Also Bought
- Grokking Deep Learning
- Hands-On Reinforcement Learning with Python: Master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow
- Advanced Deep Learning with Keras: Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more
- Deep Learning with Python
- Neural Networks and Deep Learning: A Textbook
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
- Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning series)
- Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play
- Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
- Deep Learning (Adaptive Computation and Machine Learning series)
*If this is not the "Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration" product you were looking for, you can check the other results by clicking this link. Details were last updated on Nov 6, 2024 10:44 +08.