Practical Time Series Analysis: Prediction with Statistics and Machine Learning - medicalbooks.filipinodoctors.org

Show more pictures

Practical Time Series Analysis: Prediction with Statistics and Machine Learning

Brand: O'Reilly Media
ISBN 1492041653
EAN: 9781492041658
Category: Paperback (Intelligence & Semantics)
List Price: $69.99
Price: $51.18  (Customer Reviews)
You Save: $18.81 (27%)
Dimension: 9.10 x 7.00 x 1.00 inches
Shipping Wt: 1.70 pounds. FREE Shipping (Details)
Availability: In Stock.
Buy From Amazon

Product Description

Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase.

Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly.

You’ll get the guidance you need to confidently:

  • Find and wrangle time series data
  • Undertake exploratory time series data analysis
  • Store temporal data
  • Simulate time series data
  • Generate and select features for a time series
  • Measure error
  • Forecast and classify time series with machine or deep learning
  • Evaluate accuracy and performance

Buy From Amazon

Customers Who Bought This Item Also Bought




*If this is not the "Practical Time Series Analysis: Prediction with Statistics and Machine Learning" product you were looking for, you can check the other results by clicking this link.  Details were last updated on Sep 9, 2024 10:15 +08.